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80309. USA 
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Abstract. We use the inverse scattering transform method to obtain new real and 
bounded solutions of the 2+ 1 Toda equation. We present lump solutions depending on 
3 N  complex parameters, solutions depending on arbitrary functions, periodic-like con- 
figurations which vanish s I-m and soliton and instanton configurations. 

1. Introduction 

In this paper we consider the 2 + 1 Toda equation: 

(a=-&’a,~e(~, n, tj=2${eYs.,,-e.)-e2($-B-1)} (1.1) 
where O(x.n,  t)=e,(x,t), d=+1, &z=~+l,xandtarecontinuousvariablesandnisa 
discrete coordinate. The above equation is natural to consider. In recent years it has 
been found that the classical soliton equations can be obtained as reductions of the 
self-dual Yang-Mills system~and the Toda equation is one of the key reductions [l-31. 
Moreover, r-independent solutions satisfy the Toda Lattice. equation and suitable 
asymptotic reductions result in the well-known Kadomtsev-Petviashili and 
Davey-Stewartson systems [3]. Further it posseses the desirable property of being a 
system of coupled Lorentz invariant fields. Actually the 2 + 1 non-Abelian Toda 
system is a~ popular model in modem field theory and it also appears in general 
relativity. Finally we mention that it is integrable by means of the inverse scattering 
transform (IST, see [4,5] for a review on 1+1 and 2 f l  nonlinear integrable 
equations). 

When u * z = - & ~ = - ~  the inverse scattering transform for (1) involves solving a 
so-called DBAR problem [6]. A general study corresponding to all of the cases d= + 1, 
Z=+1 was undertaken in [7]. It was found that the solution to the initial value 
problem corresponding to the choice oZ=&’=l requires the use of both a DBAR 
problem and non-local Riemann problem. The choices of U’ with E’= 1 yield elliptic 
systems for which the initial value problem is no longer well p o d ,  the fundamental 
problem is now to find solutions corresponding to data which give rise to well-posed 
problems. However, the issue of determining particular solutions was not addressed in 
sufficient detail in [7]. In this paper we focus on this particular matter, using the results 
of [7] to which we refer when necessary. 

Special solutions which are expressible in terms of well known functions, such as 
solitons, are of both physical and mathematical interest. In this paper we describe how 
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to obtain various classes of special solutions such as lump-type solutions, periodic 
configurations and line solitons. 

One particular interesting subclass of solutions are those obtained when E* = - 1 
for which S ( x ,  n, t) depends only on the radial coordinate r= ( ~ ~ + t ~ ) " ~  and n. In this 
case, S ( r ,  n) satisfies (we call this the radial Toda equation) 
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A method to obtain this class (as well as the more general case: S(x, n, t)) is described 
below. 

For solutions of some finite-dimensional Toda systems see [IO]. 
We begin by recalling the main facts we need. 

2. Inverse problem 

Equation (1.1) is the compatibility of the following linear problems 

Lp = (a, + (2.1) 
~ p = ( d , + i / e ( S . , , - e . , , ) ) p ~ + i u / ~ { - - k p ~ + , + ( k - l / k ) ~ ~ + ( C ~ _ ~ / k ) p ~ _ ~ = O  (2.2) 

On,&& + iu{kpn+l - (k+ l/k)pn+ Ci-l/k)pn,_J=O 

where Cn=een+l-en. k= k,+ik, is a spectral parameter whilepc.(x, t ,  k )  =p(n, x, t, k )  
is a spectral 'wave' function. Equation (2.1) can be converted into an integral 
equation. Proper Green functions for this problem are (we take u = l ;  the case 
c?= - ]. is less interesting) 

G+(x, n,  k)=- {H(x)H(+g) , -  H ( - x ) H ( f ( - g ) )  e-i(na+rb d a  (2.3) 
2z T 0 

where H is the Heaviside function, k = R eiq; e'"= z, g(a, q) = sin(a - q) +sin(q) and 
c= k/z  + z / k  - (k  + Uk). Functions G,, G- are defined for R > 1 and R < 1 respect- 
ively. Denotepcp,  when R > l , p -  when R C l .  Then#+ andp- satisfy 

where operators fi act as follows 
fikh&, n) = 1 (2.4) 

fikJ(x,n)=f(x,n,k)- d x x  G,(x-x',n-n',k)(Vf)(x',n',k) (2.5) 
DD I:. _ol 

and 

Vp(x, n,  k) = -{ES",,-S",~)p"+i(l/k){(Ci-,-l)p"-,}. (2.6) 
The departure from holomorphicity of G is given by 

Further 



Solutions to the 3+1 Todn equation 933 

Equation (7) can be used to obtain the analytic properties of the eigenfunction p. 
They are as follows: when U= 1 it possess both smooth regions of non-holomorphicity 
and a discontinuity across the unit circle which are measured by the 'scattering data' of 
the problem: F(k), k a  C and D(z ,  k), where z and k are on the unit circle. We also 
allow for poles to exist at some points k = k, around which one has 

where Y ( X ,  n, k) stands for a non-singular function at k =  k,. Finally p tends to 1 as 
k-t m . The equation of the inverse problem reflecting all of this analytic information 
is given by: 

p(n,n,t,  k )=l - [~da~dy jehp[ i { (n+l )~ -na+Zr(cosa - ' cosy ) } ]  0 

p-(x, n. t, e'v)Q(eia, ei*) 
eia- k X 

The scattering data evolve in time as: 
F(k,t)=F(k,O)exp[-it(k- l/k+fi-l/k}]/a (2.10a) 
D(z,  k,t)=D(z, k,O) exp[-it{k-l/k+z- l /z}]/~.  (2.10b) 

When U= f i  the non-local Rieman problem is no longer present; i.e. D ( z ,  k, 0) =O.  
Since the former case is richer and more generat than the latter we will analyse this, ie. 
in the sequel we take U= 1. Inserting appropriate scattering data into (2.4) one can 
obtain solutionsp(x, n, t, k) whereupon one has particular solutions to (2.1) by means 
of O(x, n, t) =iLn&(x,~n, t, k=O}. We refer the reader to [7] for proofs of the above 
facts. Below we consider special configurations in the spectral function. 

3. Lump-type solutions 

Lump solutions arise when we assume that F(k) = D ( z ,  k) = 0 and that p has 2N poles 
off the unit circle at locations~k, and -fij with residues at them @,, -& (this last 
requirement guarantees that e(x, n, t) is real). Note that we are taking U= E =  1. The 
equation of the inverse problem simply reflects these facts and reads 

To close this system one needs extra information relating the 9;s with p. The 
following important relationship applies 

n 
p(k) --} k-kj ={ (1 -;) i * -q~-y , )q$ (x ,  n) +Ai@, n)&, n) (3.2) 
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where yj and dj are arbitrary constants (discrete scattering data) and 
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~ j ( x ,  n) = q d j  

We now prove equation (12). According to Fredholm theory Gj  solves (for definite- 
ness sake we assume lkjl > 1 )  

(since the ki are off the unit circle the operator Rk, is well defined). It is easily proven 
from (3.3) and (3.4) that y j  satisfies equation (3.4) too, i.e. there are two linearly 
independent homogeneous solutions at  k= kj. Using p = v + Gi(x, n ) / (k  - kj)  in (2.4), 
where Y is regular at k=kj ,  one has that R(k)v= l -R(k )@l (x ,  n ) / (k -k j ) .  Taking the 
limit of this equation as k approaches k, and using (7.2) it follows that 

&;$I, = 0 (3.4) 

and where we introduce 

p ,- sign@RJ) 17 V(kj)@i(x,  YZ) dr 
2n ik, 1.-  

(3.5) 

(3.6a) 

(3.66) 

( 3 . 6 ~ )  

Define hj=v-p j .  The (3.5) reads 

Since the left-hand side is evaluated at k = kj for (3.7) to have a solution we need 

Equation (3.8) follows from the well known Fredholm alternative. With this proviso 
the solution to (3.7) is a linear combination of linearly independent homogeneous 
solutions @j(x ,  n) and v j ( x ,  n) at the point k,. The claim follows. 

We now take up the issue of temporal evolution of the discrete scattering data. 
Note that M(k)p=O. The representation (3.1) yields M(kl)@l=O. Letting k approach 
kj one obtains that 

(R(kj)h)(x, n)=l+Bi;. (3.7) 

pl;= - 1.  (3.8) 

@j(x, n, 0 lim M(k)v  = - i lim {k - Ilk - kj+ l /k j }  
k-kj k-k; k - kj 

@ j ( x ,  n- 1 ,  t){llk- l / k j } -@j (x ,  n+ 1, t). C - I ( X ,  4 
k - k .  

+ 
Using (3.4) and rearrangmg we finally obtain, after tedious calculations, that 

&yj= i(l+ ilk:) 
a,,$= - i(kj- l lkj+ 6- l / i i )Lj .  

(3.9) 

(3.10a) 
(3.10b) 
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Hence, the scattering data evolves in time as follows: 

y j ( t ) = y l ( 0 ) + i ( l +  1lkf)t 

Aj(t)  =Aj(0) exp[ - i(kj- l /k ,+ El - l / l j ) t ] .  
( 3 . 1 1 ~ )  

(3.11b) 

We now give formulae for the N-lump solution. Letting k+kj and using (3.2) in 
equation (3.1) results in 

where we introduce 

f =  - - k i  ix+n+y,k,  
1 (Li ) 

Equation (3.12) along with its complex conjugate can be cast with z,= @Jk, as 

(3.12) 

(3.13) 

We introduce the 2N x 2N matrix 

a,,9=1,. . . ,2N. Let z i C N = ~ j , k j + ~ = - ~ j , A j + ~ = - ; Z j ,  y j + ~ = - j j .  Then system (3.1) 
reads 

and thus linear algebra yields that 

Det A (x ,  n )  

Det A(x ,  n) 
p(x, n, k=O)= (3.14) 

where &s(~, n )  = 1 + A n . s ( ~ ,  n) .  It is easily proven that & s ( x ,  n)= 
(k,lkp)A.,B(x, n + 1) whereupon manipulations in the corresponding determinant 
yields 

Det a ( x ,  n) =Det A ( x ,  n + 1). 
We refer to the resulting configuration as the N-lump solution: generically it depends 
upon 3N complex parameters 4 ,  yj, k,. In  general this solution is singular (note thatin 
some physical contexts singular solutions could be more sensible than regular ones; 
e.g. equation (1.1) is related to Einstein's equations [8 ,9]  and one expects solutions to 
Einstein's equations to be singular somewhere). Nevertheless with an appropriate 
choice of parameters it is possible to obtain regular configurations. We show this for 
N = l .  Thus let us assumep to have two poles at ko=R eiq and -Lo and let2,&==pein, 
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k0y = wR + iw,. The resulting configuration looks neater when viewed from a Lorentz 
frame ( x ' ,  t ' )  realted with (x. t )  as follows 

J Villarroel and M J Ablowitz 

X - u t  t - v z  R2- 1 
U=- 

i'= (1 - u2)i/2 R Z + l '  
x' = (1 - "Z)Li2 

The non-singular lump solution is given by 

e(x, n ,  t)  =+ Ln 

{(1+2X+ p tan q sin(2nq + 4n' cosy + nn- Q)} 
,,, ..,., , ,, , ,  , . ....,.,.,,..,... , , - 

3 I +  
1 X+ P- {w +pz+pcos q cos(4.x' cos y-  (2n - 1)q +nn+ 8) 

(3.15) 

where X=(n+wR+2x'sinp),  Y=2t ' cosq+w, ;w ,>p+l /2cos  q guarantees that 
the solution does not develop singularities upon time evolution. 

The choice p= 0 results in the lump solution presented in [7]. Otherwise we obtain 
a more general configuration which shows both decaying behaviour in X, Y with 
oscillations. 

Letting q = O  yields a x-independent solution, and hence a solution of the 
1 + 1-Toda lattice. 

4. Solutions depending on arbitrary functions 

We now consider solutions depending upon arbitrary functions. They correspond to 
the pure Riemann portion of the inverse problem. Therefore they only exist if o=l .  
To obtain these configuratons we solve the non-local Riemann problem (9) with 
F(1, t )  = 0, c#+ = 0. The ensuing equations can be explicitly solved provided the kernel 
of the problem is degenerate, i.e. 

N 

D(ein, e i V ) = c  A,(e'")B,(eiv). 

With this ansatz equation (2.9) becomes 

i=1 

p(x ,  n,  t ,  k )  = 1 - ~ ~ d a ~ d $ e x p [ i { ( n + l ) y r - 2 x c o s y r ) + 2 ( r / i ) s i n y } ~ -  0 

;=I 

x ( x ,  n,  t ,  e")B,(e"#)L,(x, n,  t,  k) ( 4 4  

where 

Aj(eia) r e'" - k L , ( x , n , t , k ) = ( - l / n )  exp{i(2xcosa-na)-2(t/~)sina}-da. 

The integral equation (4.1) has a degenerate kernel and can therefore be solved in a 
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straightforward way. Indeed we have with 

F , = ~ e x p [ i { ( n + l ) ~ - 2 x c ~ s ~ ) + 2 ( t / t )  0 sinY}B;(e'*)dy (4.2~) 

exp[i{(n+ 1)~-2xcosII,+2(t/~)siny}]B,(e'~)L~~(x,n,t,  e'*)dy 

(4.26) 

(4.2~) Lj (x ,  n,  t, ei*) = lim Li(x, n,  t ,  k )  
k-1- 

k = W V  

that 
N 

+ = 1 + Lj(x, n, t ,  k)Ei 
j =  1 

where the vector E; solves the linear algebraic system 

E;,,,Ej=F;, i=1;. . . , N . .  
j=1 

~(4.3) 

(4.4) 

As long as Det E#O this system has a unique solution with the potential given by 
N 

O(x, n,  t ) =  (+) In 1+c L,(x,~n, t, 
j =1  

Thus for N =  1 one has 

L(x,  n, t ,  k=O)F(x ,  n, t )  
E ( x .  n, t) 

e(x, n,  t) = (3-1 in 

(4.5) 

and it only remains evaluating the above quadratures for arbitrary A and 5 given. 
Although this is a straightforward problem it can become quite tedious even in the 
simplest cases. We present some examples:. 

Here CT=E= 1. 
Take 

A = an{(d(a - @o) + 6 (a  + @o - z)} 

B=aI6(Y - $1) + 6(Y + @ I  -4) 
where a, @o, @ I  are just constants. Let also 

2cos((n+ 1)@-2xcos(@)) n even 
n odd. z(x,n, " @ I =  { 2 sin((n + I)@ -2xcos(@)) 

Then we obtain the following solution 
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where 
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(4.8) 

and we define sin @,-sin 
meter a to satisfy 

-r2.  To have a non-singular solution take the para- 

Here A = B = a/2x. 
We give a solution for the case corresponding to U= 1, E =  - i that can be expressed in 
terms of Bessel functions. It is a useful comment on the evaluation of the correspond- 
ing integrals. Consider, say, the integral F. Letting z = ei* we have 

F = ( a / 2 s )  z"exp[-ix(z+llz)-t(z-l/z)] dz. I I:l=1 

We find it convenient to use 

in the relevant integral. Noting that 

z" dz = 6". 

one obtains that F is given by 
I 1;1=1 

Second, one has 
exp[ix(z+l/z)+t(z-l/z)]dz I 1:I-l z"+'(z-k) 

L(x, n ,  t, k )  = 

The integrand has two poles. The one at z= k contributes as 
exp[ix(k+llk)+t(k-Ilk) 

k"+' 

To obtain the contribution at z = 0 we use an expansion in powers of (klr) 
exp[ix(z+llz)+f(z-llz) OD OD D. {ix-t&+ k } m & i - m - n - l - Z  

Z"+Z(I -k/z) =ccc j=o m=O I=O j!m! 

which turns out to be convergent for lk/zl<l and hence for Iz1= 1 (recall that k= 1- 
in the 'L' integral). This enables one to commute the series with integrals. With this in 
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mind the relevant calculations do not offer any further problem and go in much the 
same way as above; hence we gloss over the details. The solution reads 

where J .  stands for the Bessel function of order n and we assume a'<*. Note that the 
solution is nowhere singular and decays as x2+n2+t'+m as predicted in [7] via 
asymptotic analysis for the solutions of (1.1) with o=l. ~ = - i .  Equation (4.9) 
satisfies~the 'radial' Toda equation (1.2) and plays the role of a soliton for this 
equation. 

More general radial 'N-soliton' solutions can be obtained simply taking 

A, = B, = aJ2x i =  1;. .~.  , N 
and then solving the corresponding linear system (4.4); note that all the necessary 
quadratures would not differ from those already evaluated. 

5. Periodic solutions 

There also exists an interesting class of periodic solutions obtainable from the above 
picture. Spectrally they correspond again' to the Riemann-problem portion of the 
spectrum and hence they only exist for o=l. In (2.9) take U=F= 1, F(l,O)=&=O 
and 

N 

b (e", e'*) ~= - {rj6 ($ - $36 (a - &) - 7,6 ( y - $ :) 6 (a - &)} (5.1) 
i=1 

where yjjs(z/6, 5x16) and &is obtained from $; by requiring that 

and &#$,. The r's are discrete scattering data which evolve in time via (2.10b) which 
reads 

2 cos(y;) + x;= 2 cos@,) + i; 

r,(t) = r;(O) exd2t(sin Go - sin yo)}. (5.2) 
Note that this case cannot be incorporated into the general framework of the last 
section; indeed the kernel D is longer factorizable. Insertting the above ansatz into 
equation (2.9) one obtains at once a linear algebraic system which can be solved to 
give particular real configurations S ( x ,  n,  t ) .  The.simplest case corresponds to taking 
N=.l in (5.1). Equation (2.9) reads withp=$,-& and~x '=x+n as 

which results in the system 
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Upon solving this system one obtains a solution which is bounded and 2 d p  periodic in 
x'. Ast t+m the solution decays exponentially in time. The explicit form of this 
configuration is 
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e(x,n,  t )= ( i ) In{h(x '+ l , t ) /h (x ' , t ) }  (5.4) 
where 

ea' sin2(p/2) 

P 
h@'> t )  = 1 +-T- cosZ(l/2) -2(e"'/p)cos(px +xu) (5.5) 

and 

and for boundedness we take p<$ .  

6. Line solitons and instantons 

When O ~ = E ~ = - I  equation (1.2) admits a 'separation of variables' solution. It 
follows assuming that both sides of equation (1.2) equal nf(r) .  Equating first the right 
side this ansatz results in a linear equation for 8. which is trivially solved as 

where A ,  B are arbitrary functions of r.  To simplify matters assume A(.) =af(r)/2, 
B(r)=  bf(r)/2. Taking this result into the left-hand side of equation (1.2) yields 

Upon integration we obtain that 

(c is a constant) and hence that 

c>O, 4a- b2>0 guarantees that the resulting configuration is nowhere singular. This 
solution cannot be obtained from the IST analysis of reference [7] since it does not fall 
into the class of 'potentials' considered there; nevertheless it is a very interesting 
solution. Indeed setting x'=&x, t'=Ef, z = m ,  and letting E+O yields, after trivial 
rescaling of the constants, that 

1 a' + b'z + 2c'z2 
(r2+ e')' - 8,-Po(x', t ' ,  z )  =+In  
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which is nothing but the 'Eguchi-Hanson' gravitational instanton [8,9]; it solves the 
long wave limit Toda field equation 

(+x, + &,,,)w(x', t ' ,  2 )  = 8, (6.3) 
Finally, we mention that equation (1.1) also admits a line-soliton configuration for all 
choices of the parameters E and U ;  we skip here their spectral interpretation and 
simply write it out. If ~ = l ,  U= i the solution reads 

(6.4) 
ex,+p(r+n)+wt 

e(x, n, 0 = (8 In 1 + (eP- 1) + exo+p(x+")+cr 

where p is a parameter and w = - 
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